Jacobian

Vector function에 대한 first derivative(matrix)

\begin{equation} \begin{bmatrix} f_1(x_1, x_2, \cdots, x_n) \\ f_2(x_1, x_2, \cdots, x_n) \\ \cdots \\ f_n(x_1, x_2, \cdots, x_n) \\ \end{bmatrix} \end{equation}$$ $$J(x_1, x_2, \cdots, x_n) := \begin{equation} \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \\ \end{bmatrix} \end{equation}$$